The Effects of Top of Rail Materials and Rail Grinding on Head Hardened Rail

Presented by

Nicholas Dryer BNSF Railway

Dr. Mark Richards EVRAZ North America

HEAVY HAUL SEMINAR . MAY 20 - 21, 2015

1

Background

- Previous research
 - Hardwick/Sheffield
 - Previous research indicated that using some products may have adverse effects on the rail, revenue service experience with these TOR materials did not typically manifest the previous results
- One more layer of real world approach
 - Class I railroads grind rail.
 - Would this mitigate crack propagation due to hydro-pressurization build up?

2

Test Outline

RCF Initialization

- Rolling Contact Fatigue
 - Reproduce the conditions of Hardwick at University of Sheffield
 - Sample geometry and twin disc machine parameters are modified to allow increased contact pressures and rotational speed
 - Close control of slip ratio (creepage) and applied loads (contact pressure)
 - Lubrication is applied after a dry cycle break in period
- 1500 MPa contact pressure where:

$$P_{max} = \frac{2F}{\pi aL}$$

- *F* is the Force set point
- *a* is contact patch dimension
- *L* is the contact length

 $\frac{Slip \ Ratio}{100\%} = \frac{2 \times (V_{Rail} - V_{Wheel})}{V_{Rail} + V_{Wheel}}$

• V_{Rail} is the rail surface velocity

4

• V_{Wheel} is the wheel surface velocity

Test Materials

Rail Sample Head Hardened Rail: ~400 HB ∅ = 45 mm 3.5 mm length

Wheel Surrogate

Head Hardened IH Rail ~360 HB Ø = 46.2 mm 20 mm length

Wazau UTM 5000

- 5000 N Force Capacity ullet
- 50 N-m Torque Capacity
- 3000 RPM, independent drive spindles •
- in-situ eddy current
- Lubrication "drip" system flow rate control

Eddy Current

2 mm standoff distance

- Constant Position for duration of test
- Calibrated against reference sample
 - 3 EDM reference flaws
 - 0.5 mm, perpendicular

4000 Cycle, Unlubricated "Dry" Portion

- Rolling Contact Fatigue Dry
 - Unlubricated portion to
 - Break-in the sample surface
 - Produce surface damage
 - High Coefficient of Friction (0.45-0.6)
 - Low speed during force ramping to limit "uncounted" dry cycles
 - Cycle count and displacement
 based upon achieving steady
 state force level

Contact Stress

- Friction introduces surface traction
- Shear component that greatly modifies the $\sigma_{Von Mises}$
- Dry cycles COF~0.45-0.6, Lubricated COF ~0.1
- Dry cycles cause severe surface damage / deformation

Water Part 1 – 1 Drop per second

RCF Data

- Max Crack Size based upon Eddy **Current Signal**
- Coefficient of Friction
- Dry (0.45-0.6) \rightarrow Lubricated (0.1)
- Force is constant
- Displacement \rightarrow estimate of material loss

10

HEAVY HAUL SEMINAR • MAY 20 - 21, 2015 11

HEAVY HAUL SEMINAR . MAY 20 - 21, 2015

12

Material Loss – Part 1

HEAVY HAUL SEMINAR . MAY 20 - 21, 2015 13

Part 1 – 4K Dry, 21K Lubricated

2.00mm

2.00mm

Dry – 4K cycles

Synthetic TOR

Water Based TOR

Water 0.05 ml/min

14

Water Based TOR

Synthetic TOR

Water and Dry 4k

Water – 0.05 ml/min

Dry – 4K

HEAVY HAUL SEMINAR • MAY 20 - 21, 2015 17

HEAVY HAUL SEMINAR . MAY 20 - 21, 2015

WRI 2015

18

RCF Analysis for Grind Simulation

Process Capability of Depth (um) -Synthetic TOR Synthetic TOR Calculations Based on Lognormal Distribution Model N = 100Mean = $61 \mu m$ Process Data LSL • 220 μm Grind Target Target USL Based upon <1% of Sample Mean Sample N cracks having remainder Location Scale after grind simulation Observed Performance PPM < LSLPPM > USL 0.00PPM Total 0.00

Overall Capability Pр PPI PPU 0.60 0.60 Ppk Exp. Overall Performance PPM < LSLPPM > USL 9621.35 PPM Total 9621.35

220

100

60.798

3.89725

0.639258

200

160

19

0

40

80

120

RCF Analysis for Grind Simulation

20

HEAVY HAUL SEMINAR . MAY 20 - 21, 2015

Phase 2: Testing After Grinding

21

Phase 2: Testing After Grinding

Based upon eddy current analysis of the 6 grindsimulation samples

For each TOR material, a sample set representing 3 residual crack conditions were obtained after grind simulation

- 1. 1 disk with no measureable cracks (< 0.1 mm)
- 2. 1 disk with trace amounts of cracks (~ 0.1 mm)

WRI 2015

3. 1 disk of very detectable cracks (> 0.2 mm)

TOR Comparison

Water Based TOR

Part 1 – Average 93.2 mg / 25000 cycles

Synthetic TOR

Part 1 – Average 55 mg / 25000 cycles

210K Lubricated

HEAVY HAUL SEMINAR . MAY 20 - 21, 2015

210K Lubricated

HEAVY HAUL SEMINAR . MAY 20 - 21, 2015

WRI 2015

26

Crack Propagation

Crack population (combined, 3 samples each) show that the Synthetic TOR exhibits higher crack counts and larger depth values

Considerations

Sub-sized Testing vs. Revenue Service Conditions

- 1. Stress field/microstructure scale differences (1:30th scale)
- 2. Friction coefficient not representative of revenue service
 - COF Water Based TOR 0.07 Pt. 1, 0.03 Pt. 2
 - COF Synthetic TOR **0.11** Pt. 1, **0.10** Pt. 2
 - Lubrication rates likely in excess of what would represent revenue service conditions (modification for future study)
- 3. Severe surface layer damage during dry break-in results in wide-flat deformation cracks
 - Surface appearance is that the material is "rolled" out over adjacent material

WRI 2015

Representative of "dry" service conditions

Comparisons to Revenue Service

Axle load ~ 36 tons = 1 wheel pass Approximate, but conservative, estimate of MGT

- 4,000 dry cycles = 0.14 MGT (< 2 days on 36 MGT line)
- 25,000 cycles = 0.9 MGT (9 days on 36 MGT line)
- 210,000 cycles = 7.5 MGT (75 days on 36 MGT line)

Both TOR materials have been in use in revenue service

- Long term, continuous usage
- Synthetic TOR ~ 6 years in ~50 MGT line
- Water Based TOR ~ 7 years in ~70 MGT line
- No manifestation of damage as shown in the disc-on-disc testing
 - Grinding practice was in place

HEAVY HAUL SEMINAR . MAY 20 - 21, 2015 29

Conclusions

The Effects of Grinding

- 1. The grind simulation samples do have significantly less crack propagation than the original study at 10X cycles.
- 2. If there is residual RCF after grinding, that could be the area of growth depending on the Friction Modifier used.
- 3. When using an HH material there seems to be a max depth of crack propagation.
- 4. The HH rail did not have the severe RCF propagation as that exhibited by the rails used in the previous study (WRI 2014)
- 5. If FM equipment in the field is OOS, it is important to have systems return to service in a timely manner to minimize crack initialization.

Wazau UTM 5000

- 5000 N Force Capacity ullet
- 50 N-m Torque Capacity
- 3000 RPM, independent drive spindles •
- in-situ eddy current •
- Lubrication "drip" system flow rate control

RCF Initialization

- Rolling Contact Fatigue
 - Reproduce the conditions of Hardwick at University of Sheffield
 - Sample geometry and twin disc machine parameters are modified to allow increased contact pressures and rotational speed
 - Close control of slip ratio (creepage) and applied loads (contact pressure)
 - Lubrication is applied after a dry cycle break in period

• 1500 MPa contact pressure
where:

$$P_{max} = \frac{2F}{\pi aL}$$
• -1% slip ratio (i.e. $V_{Wheel} > V_{Rail}$)
where:

$$Slip Ratio _ 2 \times (V_{Rail} - V_{Wheel})$$
il + V_{Wheel}
• V_{Rail} is the Force set point
• *a* is contact patch dimension
• *L* is the contact length
• *L* is the contact length

Following Pages (36-40 point)

Subhead (28 point)

- 1. This is a sample of 24 point text in black.
- 2. This is a sample of 24 point text in black.
- 3. This is a sample of 24 point text in black.
- 4. This is a sample of 24 point text in black.

This is the minimum size text (20 point) for readability

Water Part 1

HEAVY HAUL SEMINAR . MAY 20 - 21, 2015 35

Water Based TOR Part 1

HEAVY HAUL SEMINAR . MAY 20 - 21, 2015

36

Water Based TOR Part 1

HEAVY HAUL SEMINAR . MAY 20 - 21, 2015

37

Synthetic TOR Part 1

HEAVY HAUL SEMINAR . MAY 20 - 21, 2015

WRI 2015

38

Synthetic TOR Part 1

HEAVY HAUL SEMINAR . MAY 20 - 21, 2015

39

Water Based TOR Part 1

HEAVY HAUL SEMINAR . MAY 20 - 21, 2015

40

Water Based TOR

Water – 0.05 ml/min

Dry, 21k Lubricated

Water Based TOR Part 2

HEAVY HAUL SEMINAR . MAY 20 - 21, 2015

46

Water Based TOR Part 2

Synthetic TOR Part 2

HEAVY HAUL SEMINAR . MAY 20 - 21, 2015 48

Synthetic TOR Part 2

210K Lubricated

Water Based TOR

Synthetic TOR

